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Introduction ) s | |

College mathematics education will he further chanoxi'ged_ in
the 198#'s by demographic changes, the enrollment’ of
nontraditional students (older people, for example), and by
aoéigty'# inavitable demands for increaiﬁd mathematical knowledge
and competence. Thus, fievw 1n1t£ét:lves for teaching widely
dif_tering student plopu_lations ﬁust be féum? and explqrea. th‘
mathematical knowledge bases required to éézet the scientific,
technical, vocational, cultural, and functional needs of such
varied studer;t‘popnlations must also be closely examined. But

- without proper focus NOW, our approaches to these issues will be
inadequate and the benefits will be ephemeral.

What is needed now is a revolution in iutellectual,
philosophical, and social perspectives - perspectives which ‘
reflect the very dramatic changing nature of the mathematical
enterprise. 1Indeed, it is my belief that:

{I1) College mathematics education, and in particvrla: the
mathematics training_ of TEMP* - career students, must be made
more. effective. xxiowledgc acguisition must be embedded into, and
integrated with, knovledge utilization in order tbat learning be

functional and relevant.

*PENP = Technology, Bagineering, MNathematical sauiences N

(including computer science), FPhysical science.
' 3



(II) New, mncognﬂ:lve educational considerations must be
explored znd given greater prominence in order that students be
able to parlay their current mathematics education and beginning
career status into p:pductive future learning and professional
growth. N . |

(111) Changes in perception, attitudes, and role models are

needed in order to realisze (I) and (II).
These beliefs reflect and interface with important aspects of

classroom instructica, artificial intelligence research, &nd
cogritive (:lncluding\neurobiological) research. Unfortunately

* these nodes of mathematical eﬂndw are not as well interrelated
as tl;ey could be. Thus, it is my. hope that this conference, and
this éaper iﬁ particular, will hélp to stimulate further interest
in strengthening these connections. )

In this paper, I attempt to (looselyl) depict matheutical
'\ knowledge as the resulitant vector vhose components arse
interactive processes such as the acquisition, representation,
utilization, organization, and management of information. Por ’
each person, the coordinates of these component vectors are
individual-matrix dependent. Accordingly, mathematical’ knowledge
should be thought of as a dynamic vector that grows and changés
orientation in one's intellectual space.

The instructional 'st:ateg‘.es advocated in this paper are
intimately intertwined with behavioral objectives. information-
ptocegsing, and styles.of len...ing. They are offered as general
principlies that can enhance mathematics lns&:uction for all
students.. Por mx"a, these approaches should be viewed as first-
order guiding principles that constitute the logical
prerequisities and pragmatic basis for higher order

considerations - including, for example, metacognition and
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learning how to learn - that will be the focus of a forthcomin
paper in progress. , ;
Nev Avareness r | )

The p,:esént crisis in college nthmtica instruction '13 not so
much one of "what specific course content and to whom it should
bs taught® as it is a reflection of continued failure by the
mathematical community to properly communicate wvhat mattcmatics
is and how it can be of value to different, changing student

populationaf This is sine qﬁa nonl. Without such understanding

and guidance, ' students. will find easier or more rewarding |

acadenic disciplines beckoning; why bother with mathematics and
its demands? |

Most high gchqol'students and‘gollege £reshnen.ate,cutr1cu1un
captives insofar as they must usually complete certain
mathematical course requiremeunts. But given their first
oppo:tupigy to make choices, college sophomores and junioés
increasingly vote to sbandon mathematics by enrolling in other
courses of study [32). As adults, they'll also vote with their
political and financial influencg. These votes have ominous
implications for the future concerns and allocation of resources
£?r college mathematics education.

The first two years of coilqge mathematics i3 particularly
crucial for influencing and partially reversing these voting
patterns., However, new perspectives and attitudes are required
to bring about such changes. Indeed, it is my belief that tle

1., "...the number of Native Americans, Hispanice, Oxrientals,
gogmns, and Seventh Day Adventists are all increasing-rapidly.”
vee8Ny surge of new enrol lments during the next two decades in
higher educaticu will be led by minorities, particularly blacks
and Bispanics.” "In most community colleges -today, the average
age of students is thirty-six and climbing.” Por further details
and a demographic portrait of students in the 1998s, see [8].
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E two most ciitical factors in teaching mathematics comcern "what®

one conveys and "hov®-communicstion takes place. Both Lfactors

are intimately intertwined with 1n£osmtion-lp:céon‘1ng and
learning; each has affective as well as cognitive dimensions.

"whut" one communicates in mathematics .instruetion
transcends the elucidation of mathematical concepts; the
teacher of mathematics also conveys (cdnsciously and

. unconsciously) a great deal to_ students about the |
intrinsic nature and value of the discipline iteelf. (gp)
Students' impressions and attitudes about mathematics play ,
an important role in. their motivation (therefore,
 commitment and perseveirence) and ultimate 8ucCCess or
failure in mathematics courses. _ .

Thus, effective mtheﬁutics instruction must begin by making
students want to study mathematics.

: . *How"” one communicates in mathematics instruction gqes
-\ beyond the exchange of ideas and information. Classroonm (ep)
learning experiences and attitudes give rise to long- 3
lasting psycholosocial va.ues on what it means to <o
 mathematics and who should do 1t.

¢

Inpll:l.é.:lt in each of these factors is the realigation that
effective learning is rarely possible if teachers of mathematics
cannot introduce’and develop concepts in a manner commensurate

4 with their students' information- proceséing abiXities and leveis

<
I~

of understanding. This realization subsumes an awixeness of the
fact that a large constellation of behavioral patterns may be at
wosk in predisposing students to success oOr failure in their

mathematics courses, particularly so at the basic skills level.‘

> 2. In °Nindscape &nd S8cience Theories” [11], Maru
the term mindacaps to mean "a structure of !3&.3;1“' o::;:lt?o;:
perception, conceptualisation, design, planning, and decision
mnng that may vary from one individual, profession, culture, or
228 thelr Gombinations, and 111cstiates their Bopeots at the
an ustrate
overt, covert, and mu;ct levels. ' '., their aspeats ‘.t the

0. J. Barvey administered psychological tests to universi
students over a number of years. Ing {7), he 1dnntiﬂe::£::¥

epistemological types and their dis
university st M“Y‘P‘ r distribution among :;:nt-ygfg

6
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TeAchers of mathematics must appréciate individual
differences and understand how psycho-physio-social factors
Ampect on styles of learning. °

In this vein, it is singularly important for instructors to
renlize that they too have their own eogqitixe preferences. The

types of exams they prefer and develop, for instance, reflect

(6P)y

their own cognitive styles andi not necésnruy those of the;:'

'students. Thus, students' success (or failure) may not depend

oaly on course content, but may also be related to tte
1nformxtlon-p:esenting st:dtegieq and instructional demands oi
their teacher. People do learn to learn differentlyl
Instiv: ~ional procedures‘which may be beneficial to some gtudents
can disadvantage ;nd be counterproductive to other groups of
students, Behavioral differences puat be taken into
consideration, if people having different styles of ,learning are
to interact fruitéully? A few s%nple examples suffice to
111u§trate this point. .

The quality and quantity 'of 1ng:eraction in the classroom are
important ingredients for learning., Nhile some students prefer,
and do better, v%tking alone, others 19arn best through some form
of give-and-take. The naturé of interaction. conducivé to
learning will vary aéco:ding to the student's background fand
psychological profile. 8ince setting, ambience, and interaction

are ({nterrelated, 1@: i» not immediately clear {f

" students'classroom 1nact1ut_y reshlt from cultunlly&clated

2 % ¢

3. An appropriate modification E. T. Hall's statement [6] is:
most instructors are only dimly awvare of the-elaborate and varied
behavioral patterns-which prescribe our hand) ing of time, spatial
relations, and our attitudes toward wor* Ela » and learning.
Acco:dtngg. we insist that éveryone e s do things our way ...
o

and those do not are o_tten gfegarded &s “underachievers.”
. \. IR |

-~
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. » reasons, b_ec;auee they are coneciously (or unconscious'yl)
| separating and disinv’“esu‘ng themselves from .clus:oon-
instruction, or because they feel anxious a:;d uncoemfortable in
‘ t:he educational envizonment! Instructors alert to thesa' nuances
can enhance learning through classroom-teaching strategies that
are appropriate to théi: students' behavioral needs. (Pox
exinples of st_udeut-gtndent and teachc:-at‘udent 1ntenct§ve
strategies, see (13}, 'uu, [28].) . ‘

Unfortunately, msé instructors require that all students uké

&

the class exam at the same timo, despite the fact that

° individuals learn and grovi at different 1ntellectn;a‘1 rates; This
requirement clearly stacks the odds against the slower 1§a:ne':n
as well as those who (apvpteciating time other than as a
| preciously dwindling camodity)’ have not yet learned to plan
sufficient time for study., Exam Qndes for these "out of pbase”
students do not reflect their actual subject mastery once such
students hdve caught up. Accordingly, their fimal grade - based
on grades vb:lch reflect their states of unpreparedness - may not
be commencurate with their knowledge at the end of the course. |

This disadvantage ‘can be’} diminished, 1f not eliminated, by

4. 8tyles of gaxticipauon conducive to learning also var
with culture. orth American Indians learn best tkhroug
observation. Oriental students seem to do well without heavy

. emphasis on classroom participstion. Américans generally require
more interaction than students from Anglo-French cultures, but
not as much as Hispanic students. o . -

'8, Variations in the perception and utilisation of -time
become evident as one mover westwvard and southward froa the
northeastezn rrt of the United -States.  As 2 rule, hovever -
Americans think of time as being -14:0&:,--ngnuﬂp and
quantifiable. "It should take x time to cover this'material)
ve'll plan an exam for y date,” Other cultures.share neither our
srnse of urgency mor our immutable compartmeatalization of times
it 'makes more sense to disregard time constrainte and work at
the job until it {s completed thi. it d&oces to abandon one
unfinished task in order to begin a nev ops. ‘

r
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2 broadening the constraint of "fixed day” for an exam to “"fixed
C pe_:lod'f for that exam, Por example, atngnéa can be given ;.'.lge
bpport.nnitj to take one of three variants of the exam (test '?; on
day Dy for i=1,2,3) during a fixed exam we‘ei. In this humanistic
C context, exams can do more than attempt to aubjecé:lve"' quantify .’
~levels of nnderstmding; they can (and shouldl) Dbe used as
pedagogical tools fo: motivating and ren:ding further learning.
/ ~ For instance, studenta vho did poorly on an exam uu be highly
?tivated to clear np specific areas of. veakness if they are
allowed to take another ?a:iant of this exam (during its fixed
. test period, for example)-in which case, eheir overall q:ade for
‘ that class's exam is the average of the two exams taken. PFor
an?the: variation en this theme [15], students can be made aware
" of the fect that each class test y‘!ll contain one arbitrarily

chosen prodblem from each of the preceeding class tests. oo

Knowledge !:ana’ainlon and m.lsiﬁion

The notion of learning has a wide range ot 1nterp:etnuons
ampng people =~ both in terms of what "knovledge' means and what
is required-to reach that stat\e of kqouing. ) Unfottunately, far’
too many students view mathematics as a l1ifeless body of facts
and formulas to be memorised o:g stored for short-term, cued

recalls doing mathematics ig tob widely interpreted as concept-
identification, formula substitution, symbol manipulation, and

problem solving in a very narrow, utit:fcial doman, Why is this
so? Why have 80 na?ng students bev: lulled into these
misconceptions, and how cun we help them to better appreciate '
vhat mathematical knowledge means and what is required to reach
that state of knowing? |

Each of the above guestions must have a nultiplicity of
answvers. But “an:el.y what instructors eipsct. and Jdemand of

EKC . | ' , 9

Aruitoxt provided by Eic:

- . P I LTt PEO H - A ; - R . . A T R CHER T e c
s e o T T SRS Re  SERO e el SR Y AN S i i S vt ane i e : : :
& 7 AR FR QIR Y PEY S RRREE 5



Wr’wgf; e W-‘-@‘ ‘s}!%fﬁrus#-" v”gv oy e b f\%-%\ﬁéwwmgﬁrf~r-“ﬁ::. T S I N Saltac :‘:l'-‘-'m,’{
S ’ ‘ e
¢

studuu is ptvotal. thna. we must accept the responsibility for

‘this m’:latmq ana .we .must take the initiative for bringtng

about some ve:y fundamental changes in our students' perceptions.

A necessary ﬂ:nt stap is’ to make it convincingly clear thats:

EKnowledge acquisition does not imply knowledge utilisation.

STRN Ve VI TR
i

Just being able to identify a geometrio, figure (say, a

rhonws) reveals nothing about the intrinsic properties of that

' figure. And symbolic manipulation withoui: hndetatanding is only

slightly more meaningless than solving a trivial variant of the
same p:oblen for t.hp tmtieth time. That such superficial forms
of know;edge are minimally functiml can easily be demstrated,

and must be d:iven home, by instructors. It is also very

important to alert students to the impact of a powerful anxiety- -

reducing drug, commonly called fpocltet-calcuhio;.' It anevpiatca

students’ motivation to learn by making then feel that they can
use it to solve all their mathematics problems. This myth is
also easily dispelled, For euaple:w

Bxohlen 1. Enter any number x>0 on your calculator and
repeatedly use thef¥ key. What do you get? Why? ’

Rrobhlem 2. On your calculator, enter 2 and take ¥ .
Continue to repeat this pattern of adding 2 followed by taking{ .
What do you get? Why? o

Problems which can be posed, but not solved, by a calculator

| are effective for demonstrating to students that their head;held

and that although ca.lcnhtora can be helpful for computdng, they

should not be antidotes for the headache of having to think,
Dispelling stndints‘ myths is not enough. There still remains

t:he question of how ‘to help them appreciate mathematics as a

10

- calenlatoxr is much m:o m:tul than their hand~held calculator
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dymmtc and nultuayend uctiylty - a :1ch1y reyarding and
. evolving synergism of process and p:odnct. This we nov consim

in grester detail. . ' L | N

In most 1astance§. mthematics msttuction 15 considenbly o
m‘ue eftective when’ nveul modes of pe:ception a:a used - as may - "
be the case, for example, when uett-hemisyuxlcany o:ionted)
technology students and, say, (more right-hemispheric) humanities -
mjo:a are in the same cou:sef’ Thus, both the synbouc-mlytic

app:each and the v:lsoapatul-telauml app:oaeh may be ased’ to
prove (Pigure 1) that .“the geometric series lo-g#ih..'.

”#?&Ws&* m«&m— i B RRR ~~a~;s;{’"' ¥

-Q

-

R

converges t¢Q 2,"

<

X ﬂ
-~ f- ’/ "s M
S= l+h+'l4+'/s+--- k F*__.. 33 Ao R i

BS=hefarhtoc Y2 1 e ot ets 40
3138-1 . Kk > 1 # & +==zS
o $ w2 N T Q{Mﬂ&MS"S.
oo = C . A .

Pigurei-. o H.gugo 2.

In the same spirit, analytic proofs (vig, converging-series
tests) that tbe‘--hamonic aer:!.ea diverges may be thplenen‘ted
with, or made more plausible by, following a (right-hemispheric} -
analogical tact as 4in P:l'gu:é 2,

6. Today, it is well known that there exists major
differentiations of functions between the brainks left and right
heniszheus. In the most simplistic terms, left-hemispheric
thinking resembles the discrete, smequential processing of a
digital cal¢ulator; right hemispheric thinking simvlates the
concurrent. relational activity of an analog computer.

7. Cohen {2], [3; found that white middle~class children tend
to be analytical in orientatiop, whereas Chicano and black
children tend to be rational. She also found difference in
orientation among professions [4]. e

11
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We 011 knqw that h“““"‘h can bé (and usually is) pxoved by

_inducuon. But, as u oftea the case, students feel cheated:

"here, 1nduct1_o_n is an acce}so:y after the fact., How did-one

know the formila.to be verified in the first place?”
Instructors, of ocourse, ‘can invoke Gauss' (more right~

Jhentaphonc) relational approuch to obtain.the aforementioned

conjectured formula for veriﬂcaugn (Pigure 3).

2

C - * .
- . 3

1+2¢3+8¢ 'eqﬁua"zi?ai& ¢t 6, or ;(Sfl) N -

9%.&24»2:36546 equals "3 pairs of 71' or g(6+‘1)‘

=1 i
| = 1 Sne1)
in,sure .

-

One can also obtain g‘l = ninend /2 by “counting the Jots
in the :1ght t:iangle of Pigure 4. (‘x‘ha :1gtt triangle of. dota.
when :enected with :espect to its hypotenuse, produces a sguare
of dots plus an extta superimposed diagonal. Thus,
zika n‘+n o) rigu:e 4 also illustrates some of the authoz's

: visuany-indueed proofs of other ‘known results [21]. N\
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Since pictures are usually more eaaily'recalled than
procedures, visual portrayals of algebraic processes can enhance
the retrieval of information. Synthetic division and synthetic
multiplication {10] offer two good illustrations. The point
Yeing emphasized is: -

2

Multimodal representation of ccnéepts can do more tham
' convince students of concepts' veracity; they have the v
. potential for synergistic learning - as, for example, when (6r)y

Sened Lo Finds Topresentaions/proofs in other modes of

thought.

But let's not stop here!l This leads in a natural manner t. a
whole new dimension of thinking. An example 6: two suffines to
make this clear. -

1. Having symbolically demonstrated that § = 2 (Figure 1),
the author was surprised to see that some students felt tricked
and less than convinced of this result. "Eow did you know to
multiply by 1/2 and then subtract?" “Where did the whole series
disappear to?" Interestingly, the visual proof- stumbled upon
during class session - wag pe;feetly acceptable to everyone. A
few additional remarks, between pauses, began to lead students to
a nev avareness. It ‘soon became clear that our visual proof was
also "an accessory after the fact.,"” ﬁbw, after all, éid I know
to begin with a 1 x 2 - sized rectangle in the first place? The
symbolic procf was also challenéed as being bogus since it too
wvas based on the aprioi knowledge that 8 was a finite number,
Next, vwe also discovered that the gsame algo:ith&ic_p:écess can
produce meaningfvi :s well as meaningless results (replacing the
ratio "1/2" by "r" for r>1, we still obtain 8= ‘/(H:)); and that
algorithmic, existential, and constructivistic thinking are
intimately interrelated. Pinally, it vas intuE;iQely cieaf that N
‘the analytic proof generalizes much more efficiently than a

- | - 13



geometric one to arbitrary converging feonetrie series.
(Students may enjov attempting a visospatial proof, or they can
refer tov the author's discovered gengganntion {17].)

2. Given the motivation and oppori:unity'to experiment, even
the weakest students will quickly discover that the distributive
multiplication depicted belcw

M 1L% P |
afoc @+ )(t.-l-z) ~
te M

B ctd) = al D+ olerd) 4 W
¢ ac. )‘O.c+M+bc-rH- ac +(ferad) +46d

FPigure 5.

is the representation that can best be extended to the multip-

iication of aultinomials.
3. A few well-selected examples made it clear that Gauss’

combinatoric approach (of using pairs of numbers) had gregte:
potential for adaptation to other contexts than do dot proofs,

but it was not as pervasive as mathematical induction. (Here was

the beginning cf a new appreciation and respect for induction.)

Comparing and analyzing the efficiency, extendability, and
generalizability of repteaent‘zationa is an important first step
toward developing the types of auarenéas students will need in

their algorithmic and computer-related matiematics learning.

(See, for example, {9].)

Bxperimenting with aiternate modes of representatioﬂ-'can also
be stimulating and informativéd to instructors. Figure 4, for

example, yielded a nevly discovered visual proof by the author of

EKC 14
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. the fact that tbs sum of the first n texms of an arithmetic
T progression plus n* times the difference equals the sum of the
next n terms of the m.unnﬂmf ®y examining the wfrioun
representations students use, we can better judge how well they
understood the concept in question.’

Embedding concepts in processes can help students appreciate
mathematics as a dynamic and multilayered activity - an evolving
synergism of process and ptodu;:t. These perceptions must begin,
so to speak, at the molecular level. Numbers, variables, shapes,
formulas and equations, as well as, other such basic entities,
must not be perceived as .passivg. static notions, but rather as
interactive processes and actions. This impacts on how
information itself is presented.’ To nn'neth Simon's analogy
[29]. '

A physician's knowledge of how to treat diseases is ugeless if
the physician gan't tell when the patient has the disease. Thus,
a large part of medical knowledge consists of condii:ion-pction
pairs; the condition being the disease' symptoms, and the action

being the appropriate treatment.

8., If the dots on the hypotenuse of the right triangle are
labeled "a" and all other dots on the trapesoid are labeled *a*
then (since the dots on the triangle plus the dots on the square
comprise the dots on the trapezoid) g (atkd) 2% --% (a+xd) .

9, Greeno [(5] offers three general criteria for judging the
degree of understanding of a represented concept: internal
coherence of the rcoresentation, its connectedness to other
relevant knowledge, .nd how accurately it captures the concept's
essential features.

1#. Too many students think of a variable x as being a £ixed
unznown (rather than as an actively roaming entity -~ an operator
wvhose character changes depending on where it is encountered in
its domain); formulas are perceived as receptors passively
vaiting for substituted numbers (rather than as the algebraic or
visually portrayed embodiments of how variables relate to -each
other); and equations are considored as fixed states of
equilibria (rather than as reversable processes, where each side
eyeballs the other and can get there by an appropriate sequence
of transformations). .

ERIC ‘
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This is not the format of mathematics/science knowledge, in
f'. general. We are much more explicit in enunciating principles
than in describing when and how they can be applied. Pormulas
and theorems, for example, do not always carry internal
information about contexts or situations that should evoke their
use. Greeno [5], is probably correcct in his impression that
"most teaching of algorithmic processes oftea focus almost
entirely on the actions to be perfotmed, with little attention to
the issue of when to perform them," ‘ Mathehatics texts, on the
other hand, seem to assume that once students are shown a few
worked out problems, they’'ll be able to generate their own
situation-action responses for solving problems. This is not
always the case, and even less 80 for students in their eariier

college mathematics con:sea.ﬁ .

The point being stressed here is that every important
mathematical result should be presented as the ac;ion component
of condition-action pairs. For such a "production,” the
conditions needed for the result to apply are built into Fhe

presentation. In broader terms:

&

<

11. Por instance, knowing that x° = 1 is useless in Problenm 1
if students don't realize that x¥*—ux°, Knowing how to solve
quadratic equations is useless in Problem 2 if students don't
realige that y s v ... i ey can be expressed as
yi= 2 4+ y, rinariig": novledge of the Pythagorean
theorem is useless cannot use it in appropriate situatiozns
(Problem 3) and they attempt to apply it to inappropriate con-
texts (Problen J). : .

]
2

Broblen ﬁ. .us!.ng only a compass, meas;:re 2££ length S along AB,

\ [Solution: MNark off D on AB such that AD = 13
then CD ={2. Mark off E on AB such that AE ={J;
A ¢ then CB ={3.) -

ERIC ' |
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BARER URENPE T

Bvery key notion and every lwo:tant principle should not
only be considered in terms of its intrinsic properties, .
but also as the basis £5r solving a primitive class of

A nice illustration of this 'pt:lnciple i8 "An Approach to

Problem-S0olving Using Equivalen"ce Classes Modulo n" by J.E.

Schults and W.F. Burger [29].

There is another important pedagogical facet to (GP), -

namely, .the manner in which this type of thinking and awareness

can be broade.ed to solve problems.

Iindeed, it is well known

that the manner in which a problem is described is of cziti_cgl

ioportance in determining how easily the problem can be solved or

whether it can be solved at all.

Problem 4. FPind the length
of hypotenuse ¢C.

Plsure T

Problem 5. Find the area of the
parallelogran plus
the area of the square

Pigure 8.

Attempts to solve Problems 4, 5 corroborate the findings of

research experiments: subjects don't o:dinatily Ps‘earch for the

' most efficlent representation of the problem; they tend to adopt

ERIC
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the thep:eaentation 9£ the problem from the language of its
statement.’ Thus, as Simon points out [38], it should be clear
that:
Instructors need to help students rove their skills in
refornulating and restructuring problem representations.
It is most important to make students understand that the  °
value of their mathematically-related career skills will, (GP)
- in large part, depend on their ability to recognize ané

construct contexts that evoke appropriate mathematical
" principles and processes. .

As the instructicnal dual to (GP);, where principles served-as
sgeekers” of conditions and contexts where they apply, problems

can serve as “"attractors” for as many distinctly different

solutions as possible.

e“‘f\n\ l / ,{i‘f‘&p

FROBLEMS' ‘

Plsll:. ‘90

An especially nice illustration of this is J. Staidb's "Answer
FPinding Versus Problem Solving” [32], where the class discovered
nine different ways to find the distance from a point to a line.
Also see "Convexity in Elementary Calculus: Some Geometric
Equivalences” [1], and Pedersen and Pélya’'s "On Problems with
Solutions Attainable in More Than One Way" [25].

: P

12. In Problea 4, the. se” ¢ equals 1 since the other

: diagonsl of the rectangle is the radius of the circle. If the

R : "parallelogran® and the “square” (in Werthheime:'s Problem 5) was

restructured as overlapping right triangles of base a and height
b, the desired area is tely seen to be ub.

ERIC | |
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"The perception of objects, ‘systems, and proeeseee vary
T considerably amongst people, and this has tremendous bearing on
how mathematical notions are perceived and utilized. This is
especially true in the classroom. As teachers are expounding on
mathematical notions and principles, students are busily
concocting their own idiosynchratic versions based on their own
consistent private logic. Such cognitive misinterpretations,
however, are not confined only to deve‘lopmen.tel mathematics N
students or to those whose backgrounds do not reward clear and
precise thinkirg. In the margins of Bourbaki's advanced level
texts, for instance, the roadway danger signal € (cautionl) is

followed by elaborative comments designed to help p'revent readers

from making wrong interpretations that are consistent with the

antecedent exposition.- The point being stressed here is that: |
e Tt bave 'and “procnpt T ’ét%“e“nfi‘i (6},
misinterpretations.

The instructional strategies summarized in (GP), - -(GP)., can
help teachers nenitor, and become more attuned to,- the nature of
these misinterpretations. To the extent that we examine,
analyze, and modify our instructional strategies, we gain a
higher form of instructional knowledge -and an increased capacity
for becoming better imparters of knowledge.

There are also important infermtion megenent conside:ationa
for the acquirerers of knowledge. Consider, for instance,
students who do well on homework auiqnnents or quizges covering
each specific aspect of a prodlem sitnation but still do poorly
on exams where they are no cues as to wvhich aolution strategies -
to apply to the problems as a vhole. In short, they lack certain
aspects of control knowledée (that is, information megenene).

Other manifestions of deficiences or weaknesses in control

Aruitoxt provided by Eic:
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:kAo;leﬂqe 1;e1udex incorrect or incomplete cahegogisaﬁiqn of
< ptobrén protoypes, lack of coherent knowledge structure and
organization, inability to recall or retrieve information,
nonassessment of concept attainment,ﬂhnd disregard for solution
verification.

There are nany strategies for helping students to oveicome
these deficiences. A contextually-representative sample might be
the following:

‘o Classroom examg. " Without actually sélv;ng problen ‘P,

carefully describe and/or set up in as many different ways as
possible how to obtain the answer to P.'d .

o Homesork nnaignnanxﬁ. *Compare and contrast the types of
problems {(and how tﬁey are solvedl) in this chaptet'with those in

L
co.'

o Interactive discussions. "How do you know that your method

is co:rect? Your answer is reasonable? .4"‘

e Iexn papers or course-related projects, "Summarize the
chapter's (course’'s) rey cohcepts and principles, and be aufa to
discuss or depict their interrelationships.” (See, for example,
[26), (27}).)

e Realistic rols models “...0kay, I'll try to sclve and

- analyze this mathematical problenm yéu've eneountefed in the
physics lab (on the job,‘for contest X, ...). I'm not really

sure where to begin"quﬁpoge ve first attemps,..becauvse ... *

——

13.- In "Questions in the Round ~ An Effective Barqmeter of
.Unde:sea:higg' {14], the instructor proceeds arouné the roonm

requiring that each student either ask a guestion (to be answered .

the instructor) or else be asked a guestfon by the instructor,
:gia<:tzat p:gvides an excellent opportunity for instructors
to ask questions of control knowledge.
ERIC
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: ?" . (.-'The most effective strategy, however, is to make ttudonts
. i realize that while it is natural to form niséonéeptiona and make
. errors, specific actions for their detection and analysis are
also inpottént mathematical activities. wé must demand, and
students must be made to appreciate, that verification and
analysis are neceasary'in doing mathematics., Thus:
contes) RIsvieds IS I0s ¢ e com
It seems clear that both teachers and students can receive and

impart important types of knowledge from each othexr, Accordingly:

-

Teachers must invite and encourage students to be

responsible partners in an interactive collaborative (gp)y
learning environment, -

- Interacﬁtive‘ a-nd collaborative aspects of (GP), have alre‘ady
been considered earlier. The invitation I urge is not explicit
in nature, but rather implicit in the way we teach and do
mathematics in the classroom - nan%festationa,aoto speak, of
being "great £eache;s' in the sense of J. Epstein's edited volume -
of essays Masters: znx:zﬁitn.nf.ﬁxsnt 2=n£h3:a [12)s

*What all th& great teachers apﬁéat to have in common is a

“love of their subject, an obvious satisfaction in arousing

this love in their students, and an ability to convince
them that what they are being taught is deadly serious.”

The most naturdl embodiment of (GP), is for t§achers to guide,
assist, and/or collaborate with students in actually gdoing
nathemagics Ehat has neaiinq to them., There are many ways to
proc‘aggl. depending on the students' capabilities and levels of
mathematical sophistications

m nmhlm.. puzzles, and gamea have been popular

... .. 8ince Mmm;in@mimmnmmwm tothe —
" development of nodeiﬁxggthematics. Thus, Leibnitz appears to |
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have been correct when he said, "Men are never so ingenius as -
when “hey are inventing games.” Recreational mzthematics and
examples from everyday life always stimulate students' curiosity
and whet their intellectual appetites for more.

Weaying mathematical tapestries can be fascinating. Combining

and interlacins novel ideas from diverse areas of mathematics (as
distinct from applying mathematics to other disciplines) is a
beautiful way to impress students with the fact that mathematics

is indeed a coherent, harmonlous whole.

Doing mathematical researnh cannot ‘fail to convey the
challenge and excitement of attempted discovery. Ftuitfnl
research exists at all levelaf' The rewards of successful
‘research - giving ;n invited (classroom) lecture, seeing one's
results(s) in publication, and other forms of peer
acknowledgenent“ can be the biggest payoffs and reinforcers for

students to stay invested in the study of mathematics.

Concluding Remarks
1 Pinally, as we began, let us pause to reflect oq’where'
college mathematics cguld be heading, To the extent that we
succeed in going beyond changing our students’ votes and actually
imbue our more capable students with positive perceptions of
(and feelings toward) mathematics, we increase the likelihood
that the focus of mathematics instruction will not only be as a

"seeker”® of conﬁexts and domains of application, but will also

o A4, For examples of mathematical research that can be
T T uldertaken by, or shared with, students in their earlier years of
‘ college mathematics, see ([18), geometry), ([21), precalcuvlus),

({19), calculus 29 r t
([22]'and Hh ;én;gLIJ{' numbcr theory), ([23), statistics),

5 ,



bec%ne an 'Att:aete:' for significant contributions from many of
these serwiced discipiines. Mathematically competent and well

predisposed students entering careers in computer science, the
| social and biological sciences, and the humanities will most
likely be more motivated and better equipped to bring their
" expertise to bear on improving and enhancing mathematics
instruction.

By giving careful attention to the shat and how factors of
mathematics education, college mathematics instructors can play
an important role in the evolving vitality and future grpwth of
. mathematics instruction at all levels. It is not an opportunity

that should be cavalierly disregarded.

L}
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